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Non-Born—Oppenheimer trajectories with self-consistent decay of mixing
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A semiclassical trajectory method, called the self-consistent decay of mi8G®M) method, is
presented for the treatment of electronically nonadiabatic dynamics. The SCDM method is a
modification of the semiclassical Ehrenfe$8E) method (also called the semiclassical
time-dependent self-consistent-field methdldat solves the problem of unphysical mixed final
states by including decay-of-mixing terms in the equations for the evolution of the electronic state
populations. These terms generate a force, called the decoherent{domephasing forge that

drives the electronic component of each trajectory toward a pure state. Results for several mixed
guantum-—classical methods, in particular the SCDM, SE, and natural-decay-of-mixing methods and
several trajectory surface hopping methods, are compared to the results of accurate quantum
mechanical calculations for 12 cases involving five different fully dimensional triatomic model
systems. The SCDM method is found to be the most accurate of the methods tested. The method
should be useful for the simulation of photochemical reactions.26©4 American Institute of
Physics. [DOI: 10.1063/1.1648306

I. INTRODUCTION degrees of freedom are the electronic degrees of freedom of
a molecule, the energy spacings are often large compared to
There is no totally consistent way to combine quantumthe nuclear kinetic energies, and this inconsistency makes the
mechanics for a subset of the degrees of freedom of a systesmergy distributions qualitatively unreasonable. In a recent
with classical mechanics for the complementary subset. Thipaper? we introduced a decay-of-mixing method called
poses a challenge for semiclassical theories of non-Bornnatural decay of mixingNDM), which includes decoherence
Oppenheimer dynamics—i.e., electronically nonadiabatieffects in the SE method by adding an artificial force term,
processes, where electronic motions are treated quantum mealled the decoherent force. The decay-of-mixing method
chanically, and nuclear motions are treated by classical ogmploys a switching algorithm to determine the pure state
quasiclassical methods® Consequently, a large number of toward which the decoherent force drives the system. We
approximate methods for treating coupled electronic andhowed' that the decay-of-mixing method gives more accu-
nuclear motions have been put forward; since several monaate results than the SE method and is comparable in accu-
graphs and reviews* are available, we will not include a racy to or more accurate than Tully's fewest switckEES)
summary of all available methods here. versiort®?2 of the more popular trajectory surface hopping
A formally appealing approach to treating such problemsTSH) approach. Unlike TSH methods, the decay-of-mixing
is the semiclassical Ehrenfe¢8E) method®'%-%in which  trajectories never undergo discontinuous changes in mo-
the potential governing the classical nuclear motion is thementa.
expectation value of the Hamiltonian for the quantal degrees The attractive features of the decay-of-mixing method
of freedom; this is also called the time-dependent selfencouraged us to study it further, and in a later pEpee
consistent-field method or the time-dependent Hartreextended it to permit calculations in the adiabatic represen-
method, and it is the most pristine member of a general clasgtion; this extension takes advantage of the adiabatic-to-
of methods called mean-field methods or self-consistentdiabatic transformation, but the system decays to adiabatic
potential methods. When the average potential for the quarstates, which is sometimes physically more reasonable than
tal degrees of freedom is computed from an ensemble afecaying to diabatic states. In further work on a system with
trajectories, the method becomes inaccurate as the trajecta-conical intersectiofft we found that the decay-of-mixing
ries separate in space and the average becomesethod is much less sensitive to the choice of representation
meaningles&® When the classical mechanical part of thethan are TSH calculations, which is encouraging because an
system is described by independent trajectories, the methattcurate quantum mechanical calculation of the dynamics
becomes more accuraf,but the inability of a mixed would be independent of the representatit®emiclassical
classical—quantum method to properly handle coherence arighrenfest trajectories are completely independent of
decoherence remains a serious defect. In particular, the lackpresentatioh® which is one consideration in favor of this
of decoherence means that individual trajectories end in approach, but as mentioned above, they predict unrealistic
mixed state and the distribution of energy in the classicaproduct energy distributions because they do not end in a
degrees of freedom is not consistent with the quantized ngsure state, a problem that is corrected in the decay-of-mixing
ture of the quantal degrees of freedom. When the quantahethod by adding decoherenceln the present article we
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introduce three improvements to the decay-of-mixingmatrix. In recent papers, Rossky and co-workers have also
method: formulated a self-consistent independent-trajectory method
that includes decoherence, with a special emphasis on sol-
vent effect®2° Ultimately one might be able to model de-
coherence better by a trajectory method where the quantum
(i) We present a more satisfactory choice for theec- evolution depends on a swarm of .'[rajectoﬁ%?,2 but at
present such methods are less practical for complex systems,

(i) 3\72 i?]l'([rg];ug:(::i:;rgefgrf:{r dependence for the dez_ind so we will not consider them further in the present paper.
y dep In the present paper, in addition to introducing physical

coherence time that ;aﬂsﬂes physically correct I'm'tsimprovements in the method, we present a new way of car-
for large and small kinetic energy.

rying out calculations in the adiabatic representation that

Because these improvements make the method mm%oes not require knowing the adiabatic-to-diabatic transfor-
ation. We also reformulate the decay-of-mixing algorithm

self-consistent and to emphasize that the method is an in{pt f densit i Th ; i
proved version of the time-dependent self-consistent field? '€rMs Of density matrices. These reformations are conve-

method®1%-%the method is called the self-consistent deca)pient in some cases, especially for the multistate case, where
of mixin,g (SCDM) method a unitary transformation of the electronic Hamiltonian does

We note that decoherence, dephasing, and decay of misot in general correspond to a canonical transformation of

- he classical-like particle representatitn.
ing all refer to the tendency of a coupled state system t& .
evolve into a statistical mixtufé of pure states. In the Although we discuss the NDM and SCDM methods as

present application the states in question are those labeli b”d. qL.Jantum—.c_Iassmal methods: In practice we use guan-
the reduced electronic density matrix in which nuclear mo-ized initial conditions for the classical degrees of freedom.
is is usually called a quasiclassical treatnfeti®®and in

tion has been integrated out. We simulate this decoherenc

by representing the quantum-mechanical wave packet as'g'S §e|nse. thle hybrid methods can be called quantum and
set of independent semiclassical trajectories. The ensempfifasiciassical. .
Section Il presents the new SCDM theory. Section |lI

of semiclassical trajectories evolves to a set of pure states, ) . : .
resents test cases for three-dimensional atom—diatom colli-

which, taken together, represent the statistical mixture of fiP! i . . . . .
nal states of the quantum-mechanical system. Although therd©ns: Section IV gives numerical details of the semiclassical

is a close connection between physical decoherence &ajeqory s remaining_ sections contair_1 Sys-
dephasing and the algorithmic decay of mixing required fOI,temitlc tests of the methods, discussion, and concluding re-
the set of final states of the trajectories to simulate the fina"arks:
state of the quantum-mechanical system, the reader should

keep in mind that the algorithmic demixing considered herd!- THEORY

is not necessarily identical to physical decoherence. There- e will present the theory for both adiabatic and diaba-
fore the only check of whether the approximations we emtic representations. The matrix elements of the electronic
ploy for treating the decoherence time are reasonable is teamiltonianH,,, including nuclear repulsion, are the poten-
compare the results of the semiclassical calculations employtial energy surfaces and are calletl,,, wherek and k’
ing our algorithm to accurate quantum dynamics. Furtherigbel electronic states:
more, although the decoherence language is useful to empha- ,
size the connectionsbetween the decay of mixing and Ui =(kIHelK"). @)
decoherence, others might want to emphasize the distinctionthe number of states is called, sok=1,2,...m. We solve
by replacing “decoherence,” “decoherent force,” and “de- the equations in an isoinertial, mass-scaled nuclear coordi-
coherent state” by “decay of mixing,” “demixing force,” nate systenR in which all nuclear masses are scaled to the
and “pure state,” respectively. same reduced mags The nonadiabatic coupling is anm
Dephasing refers to the physical effect of damping outx m anti-Hermitian matrix in state spakeand each element
the coherence. Decay of mixing refers to the gradual switchis a vector inR:
ing from an SE trajectory to an ensemble of single-surface don = (KTl K’ 5
trajectories. The electronic coherences are the off-diagonal ¥’ (k[ VRlK'). @
elementsp;; of the density matrix; when these are signifi- The momentum conjugate ® is calledP. In the adiabatic
cant, the resulting motion is best described by the fully co-approximation,U is a diagonal matrix calle?/, and in a
herent SE method. As the system dephases and these offiabatic representatioul,, is neglected by definition.
diagonal elements tend to 0, the nuclear motion in the two In the present paper the diabatic representations are de-
states is no longer coherent, and the SE trajectory may biéned as havingd,,, equal to zero(which is possible for
replaced with an ensemble of single-surface trajectories. It isealistic representations of strong-coupling regions, but
therefore reasonable that these two procegses physical which could not be true for an exact treatment of the elec-
and one algorithmicoccur at about the same rate. tronic motiort®~33. The nonadiabatic coupling vector in the
We also direct the readers’ attention to recent papers bgdiabatic representation is an important quantity even for
Rossky and co-worker8 2 which were the first papers to calculations carried out in the diabatic representation. When
elucidate the picture of the classical degrees of freedom serthe nonadiabatic coupling is neglected or defined to be zero
ing as a “bath” that decoheres the electronic reduced densitin the diabatic representation, then the nonadiabatic coupling

(i) We make the switching algorithm locally self-
consistent in the Ehrenfegtime-dependent Hartrge
sense.

Downloaded 15 Mar 2004 to 160.94.96.169. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 120, No. 12, 22 March 2004 Non-Born—-Oppenheimer trajectories 5545

in the adiabatic representation is derived entirely from the — HSE=T+(W|H V), (5)
diabatic-to-adiabatic transformation. In the rest of this paper,
dy always refers to the part of the nonadiabatic coupling inwhere the electronic Hamiltonian contains the electronic ki-
the adiabatic representation that comes from the diabatic-taretic energy and the Coulomb interactions. If the electronic
adiabatic transformation. Sincg,, defined this way is large wave function¥ is expanded in the diabatic basis,
in strong-coupling regions, we use it as a criterion of strong
coupling in both representations. _

We remove the irrelevant straight-line motion of the cen- V= EK oK), ©

ter of total mass, and the momentum may be writtell as
and the complex expansion coefficients are written in the
P=Pyip+ Prot, (3)  classical-like particle representatidri® as

whereP,;, is the local vibrational momentum, amy; is the 1
linear momentum associated with the overall rotational mo- ¢, ,=— (X +ipy), (7)
tion. Note that for a collision process, the initielative V2
translational motion of the reagents is considered a vibra-

tional motion in this decomposition. The instantaneous vibra-Eq' (5) can be written

tional kinetic energy is given by HSE=T,+ VSE ®)
P where
Tvib:ﬁa 4
SE_
whereP,;, is the magnitude oP,;,. The decompositioii3) v _Ek ”kUkk‘L; k%k (XiXier + PrPier ) Ui ©

is presented in a previous articte.
As reviewed in the Introduction, the tendency of stateand where the electronic state popu|ati0d2 of statek is

populations to evolve to a statistical mixture of pure states

(this tendency is called decay of mixings assumed to be N= 3 (XX + PrPi) - (10

governed by the time for decay of the various electronic

coherences. Both processes are assumed to be first order and The nuclear position and momentum of an SE trajectory

to be governed by the same rate matrix. In particular, th&Volve according to classical equations of motion

rates are determined by a matrix with elements , which

are called the decay-of-mixing relaxation times: their recip- ~ R=P/p, 11y
rocals are first-order rate constants. The decay-of-mixing al-
gorithm is a modification of the semiclassical Ehrenfest —P=P5=—VV*F (12

method!® and the SE method is reviewed in Sec. Il A. Sev- o _ o _
eral properties of the decay-of-mixing algorithm are derivedV}’here the qverdot indicates d.lfferentlatlon Wlth' respect to
in Sec. Il B by requiring conservation of energy, angular mo-time, andVy is _the nuclear_grad|ent. The elept_ronlc variables
mentum, probability, and electronic phase angle. These corfvolve according to the time-dependent Sclimger equa-
siderations leave undetermined the following threetion, which becomes
choices: (i) the relaxation time matrix(ii) the direction$
(_in nl_JcIear momentum _spa)oa:alle_zd the dfacoherent direg- % =%E=p Ut > PuUir s (13)
tion, into which electronic energy is deposited or from which k' #k
it is removed as the mixing decays, afiid) the method for
determining(as a function of timet) the state, called the
decoherent state @€, towards which the system is decoher-
ing. (Note that a caret denotes a unit vegtorSections Il A
and 11 B present the theory in the diabatic representation, and We note that Miller and Meyer proposed® a Langer-
a way of treating the adiabatic representation is given in Sedype modification to the SE method, in which the substitution
[l C. The decay of mixing equations is presented in the denny— N+ 3 is made in the electronic variables. The resulting
sity matrix formalism in Sec. IID. In Sec. IIE, the previ- Hamiltonian is further modified such that eigenvalues of the
ously implementet! version of the decay of mixing algo- Hamiltonian matrix equal those obtained from the SE
rithm called the natural decay of mixing method is discussedmethod. Each trajectory, then, depends on the initial value of
In Sec. Il F, we present the details of the improved decay-ofthe electronic phase angle in addition to the initial values of
mixing algorithm, called self-consistent decay of mixing.  the nuclear position and momentum. Results are obtained by
averaging over all three of these quantities. We have previ-
ously tested this method, which we call the classical electron
The Hamiltonian for the semiclassical Ehrenfest method CE) method, and in all cases we found it to give results that
HSEis defined in the diabatic electronic representation as thare either similar to or worse than those obtained by the SE
sum of the classical nuclear kinetic eneffyyand the expec- method?*? We do not consider the CE method any further in
tation value of the electronic Hamiltonia,,: the present paper.

P=Pre= XU~ 2 XU - (14
k' #k

Il. A. Semiclassical Ehrenfest method
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11.B. Semiclassical Ehrenfest method with decay
of mixing VDM: ; nkU kkT ; E (Xkar + pkpk’)Ukk’ , (24)
'<
The decay of mixing algorithm modifies the SE equa- o
tions of motion(12)—(14) such that the system decays con-
tinuously to a pure state. In particular, the equation of motion ~ \/DM _\/SE \/D (25)
for the nuclear position is unchanggsg. (11)], but those for

the momentum and the electronic variablgsand p, be-

and has been written

using Eqs(16) and(17). Note that Eq(24) differs from Eq.
(9) because the, andp, variables in Eq(9) evolve accord-

come
o _ ing to Eqs.(13) and(14), whereas the&, andpy variables in
P=pPSE4 PP, (15 Eq.(24) evolve according to Eq$16) and(17). Thereforé?
: LSE, D
X=X+ X, 16 o1 : . : :
k k k ( ) VD:E; (XkXE+ pka)Ukk—‘rEk 2 (XkXE,+XerE
Pi=P+ PR (17 i ok
. : D
Several properties of the decoherence teR%sx? , andpP + PPy + Pr Pi) Uk - (26)
are discussed in the following subsections. First, however, The first two terms on the right-hand side of Eg3)
we note that the SE labels on the first terms of H4§)—  correspond to SE motion and conserve total en&tgipr the

(17) refer to the local time derivative only. When one in- decay-of-mixing algorithm to conserve total energy the sum
cludes the decoherence terms, the trajectory immediately def the two remaining terms must equal zero, and using Eq.
viates from the SE one, and 3% andp;F here are different  (21), we therefore obtain

from their values along the SE trajectory. o
I.B.1. Conservation of total angular momentum F= Py’ (27)

and energy

. L and the change in nuclear momentum due to decoherence is
The time derivative of the total angular momentum g

_ _ /D
J=RXP (19 pD:_-%igg (28)
can be written
P Thus the right-hand side of E(R8) is the decoherent force.
J=RXP+RXP=—XP+RXPSE+RXPP, (199 Note thatP® becomes singulaundefined asP-5—0 unless
o

. this singularity is cancelled by a zero WP; this constrains
where we have used Eqgll) and (15). (Note thatRP is  our choice of the directios. We will chooses in Sec. 11 C
zero) The first two terms correspond to SE motion, and thesuch thatP-5 only equals zero wheB,;, is the null vector. In
SE method has previously been shown to conserve total athe semiclassical Ehrenfest method, as in an ordinary trajec-
gular momentunt® By requiring the decay-of-mixing tory, the various components &, will not equal zero si-
method to conserve total angular momentum, we thereforeultaneously, and hence the variabRg, and T, will not

obtain pass through zero. However, in the decay-of-mixing algo-
5 rithm, the decoherent force can driw,, toward zero in
RXP"=0 20 some regions of space. To prevent the right-hand side of Eq.
or, equivalently, (28) from becoming singulal\'/D must go to zero faster than

‘D a the denominator. Thus¥® must be an explicit function of
PP=F3§, (21) . ) TR

Pyib, which, for smallP,;,, varies asP;, with n>1. In
whereF is an undetermined scalar function asds a unit  practice, we have found that=2 is sufficient to prevent this
vector that lies within the nonrotating subspace of momenproblem(we did not examine fractional values like 1.5

tum space: i.e.$ must be chosen such that We note that Eq(28) can be generalized to
RX38=0. (22) VP
. . MV
D__ D__ 2
The time derivative of the Hamiltonian is P —Ek: Pc= Ek: P-5, o (29)

= E(T +V) whereVy is the contribution to/° from statek, and we have
dt* N allowed the direction of the decoherent fo&eo depend on
. the electronic stat&. We will consider Eq.(29) in more
_ EH'/DM detail in Sec. Il F1.
)73
p.pSE p.p° I.B.2. I_-'/:rst-order decay and conservation of
= . +VSEL T +VP, (23 probability and phase angle

. We assume that the decay of the electronic state popula-
where VPM is the time derivative of the classical potential tions is first order and that there is some electronic state
energy, toward which the system is decohering. A set of decoherence
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times . is defined such that the electronic state populatiorother as the trajectory proceeds in such a way that on average

ny for k#K decays to zero at a rate ofrif—i.e.,

L

=—— for k#K.

i for k#K (30
TkK

To ensure conservation of probability, we set
> =2 g+ g=0. (3D)
k k k
The SE terms conserve probabiltfyso
> ng= 2, hg+nR=0, (32)
k k#K
and therefore
. . D Nk
nK:_E nk=2 _—. (33
k#K k#K TkK

The electronic phase angig is defined by

the ensemble of trajectories produces a statistical mixture of
pure states that agrees as well as possible with an accurate
quantum-mechanical calculation.

Putting Eqgs.(37)—(40) into Eq. (26) shows that every
term in V® is proportional to one or anothe{kl,. Thus the
requirement in the previous subsection that, for srRgil,

VP varies asPl),, with n=2 leads to a requirement that, for
small P;,, eachry, varies asP,;; with n=2.

II.C. Decay of mixing in the adiabatic representation

So far, we have limited our discussion to the diabatic
electronic representation. In this section, we consider apply-
ing the decay-of-mixing algorithm in a general representa-
tion that includes the diabatic and adiabatic representations
as special cases, and then we specialize to the adiabatic case.
For a general basis, the solution to the time-dependent
Schralinger equation

|fLCk:E Ckr(Ukkr_iﬁR'dkkr). (42)
k!

and the contribution to its time derivative from the decay The coupled equationgt2) reduce to the diabatic represen-

tanqkzg, (39
Xk
terms is
d XDl — Xic Pi
< (tanqy)| =—————. (35
dt b Xic
Requiring conservation of phase angle gives
- D D
X
Pe_Xc (36)
P Xk

From Egs.(10), (30), (33), and(36) we can derive expres-

sions forx? andpp . Fork#K,

. Pk
D_ _
pk 2TkK1 (37)
D_ Xk
X = 2k (38)

and for stateK,

) Pk Nk
D

ks ko 39
PR ZnKk;K . (39
Xk Nk

P > —. (40)

D——
2Nk KZK Tkk

For later reference we note that, for dgythe contribution of

decoherence to the electronic state population is

=D - - SE D =D
N = Ni—= NE= XX + PiPye - (41)

tation if d,,» =0, and they yield the adiabatic representation
if U =0 for k#k’, in which casel,, is calledV,. Sub-
stituting the complex expansion coefficients, EQ.into Eq.
(42), we have

}eE= 2 (1P Upge — X Redige ), (43)
k/

Pet= 2 (7 i Upgo + P Redige). (44)
o
The decoherent contributions to the rate of change of these
generalized coordinates are obtained using E&%.—(40)
and are added to Eq$43) and (44) to obtain the overall
electronic motion by Eqg16) and(17). The nuclear coordi-
nates and momenta satisfy Eq$1) and(15) with

PSE:_% nkVRUkk_Zk > (XX + Pibir) VeU e
k' <k

+; Ek > (XX + PrPj) U dier - (45)
k/

In the adiabatic representation, E45) reduces to an expres-
sion derived by Tully, namely,

PSE=—§ nkVRvk+; > (V= Vie)dige , (46)
k/

in which n, is defined in Eq(10), but here it represents the
electronic-state population in the adiabatic representation.

After requiring a first-order decay of the electronic state[Note that we corrected a sign error in Tully's equation
populations and enforcing conservation of energy, angula(6.26); Eq. (46) is derived in the Appendi. The force and
momentum, probability, and phase angle, the remaining unmomentum derivative associated with the decoherence are

determined parameters are the directdior the set of§, if

given by Eqgs.(26)—(29). Conservation of total energy and

the more general Eq29) is used of the energy exchange angular momentum and conservation of density and phase

due to decoherence and the set of decoherence tines

angle for electronic states in a general representation can be

We also need a method for determining the decoherent stafgoved in the same way as in Secs. [IB1 and |1 B 2 for the
K—that is, for switching from one decoherent state to an-diabatic representation, respectively.
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The advantage of the adiabatic formulation presented ) .
here over the one presented in Ref. 23 is that the present i%ipi; = El (P U —17iR-dy] = pra[ Uy, —i72R-dy; ]),
treatment does not require one to know the adiabatic— (50)
diabatic transformation. The two formulations give identical
trajectories and electronic probabilities for systems with twoand using Eqs(37)—(40), the decoherent contribution is
electronic states; one can use whichever formulation is morgiven by
convenient. For systems with more than two electronic

states, matrix elements of the nuclear kinetic energy operator _ pii i £K

couple the adiabatic electronic states in addition to the mo- | Tik ' '

mentum coupling that already occurs in the two-state case. Pii— Pii (51)
These terms are neglected in the present treatment, but are 2, —, 1=K,

included(nonuniquely in the treatment in Ref. 23. This am- J#K K]

biguity in the semiclassical electronic state formulation isgng forj#j,

endemic to the formulation of the problem in which quantal

degrees of freedom are coupled to classical ones in a (1)1 1 . .
classical-like framework® Nevertheless, Eq46) has the ad- ) ?KJF - )le 1K jEK
vantage that it is independent of the nonunique adiabatic-to- 1/ 1 2 1

diabatic diabatic transformatiaithe transformation is nonu- pP= _<_ > Pri_ _>Pi' . i=K, j#k,
nique because a strictly diabatic representation does not ' 2\ Pk K7K Tkk  TiK :

exist®~39. One (nonuniqué way to resolve the latter ambi- 1/ 1 e 1

guity is to define the problem in the diabatic representation 5(@@}( T_Kk_ H)Pij , 1#K, j=K.

and assume that the entire nonadiabatic coupling results from \ (52)
the diabatic-to-adiabatic transformattii*®=** (retaining

the longitudinal part due to the transformation but neglectingrhe time derivative of the nuclear momentum can be written
the remaining longitudinal part and all of the transversein density matrix notation as in E415) where

part®), but further discussion of this aspect of the problem is

beyond our scope. We simply remark that the formulation in HSE(1) = 2 AT E E (2 Repyur) VU e
R "} VR !

this section is preferred because it is equally applicable W=k
whether one defines the problem in a diabatic representation
where nonadiabatic coupling vanishes or in an adiabatic rep- +2 E 2 (2 Repi)Upe i (53)

resentation that includes both longitudinal and transverse

nonadiabatic coupling. Other problems arise, however, if the

nonadiabatic coupling does not vanish in asymptotic reglonsand PP is computed using Eq29) and

and we implicitly assume that it does. We also neglect elec-

tronic angular momentum. Vo 2 PkkUkk+2 > (2 Repkkr)Ukk' (54)
k' <k

I1.D. Density matrix formulation

So far, we have presented the decay of mixing formalism = NPM

in the particle representation of Ref. 15. It is also useful to  For the previously published NDM meth8tthe deco-
present the equations in density matrix language. The twberent direction is independent of electronic state; i.e., Eq.
treatments give identical results. (28) is used with

The elements of the electronic of density matrix are b
A vib
pi=cict @ S, %

and the relaxation times are

wherec; is defined in Eq(7) andc] is the complex conju-
gate ofc;. Using Eq.(7), we obtain

— iy —xD. T
|m(Pij)_ 2(X]p| le])! Tkk':TEEPﬁ:l’ (56)
Re(pij) = 3 (XiX;+pip)), i#], (48)
where

ni=pj;=3(x*+p?).
The time derivative of the density matrix can be decomposed 7o = AU (57)
into a semiclassical Ehrenfest contribution and contribution kk
due to the decay of mixing force: AUp=|Upre— Uyl (58)

pij=pi; Py, - (49

andT, is a constant which we set equal to the total endtgy
Using Eqgs.(16), (17), (43), and(44) one obtains, for the SE relative to the potential energy of the reactanat equilib-
contribution, rium.
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The system starts in a pure state, and initially the decowhereP,;, is the momentum associated with internal vibra-
herent state is the same as that state. The decoherenKstateional motiort® and d(kf,t) is the total nonadiabatic coupling
is dynamically determined at small time intervalsalong  vector given by
the classical trajectory using the fewest-switches méthod
and the electronic state probabilitieg, which arep, in the d\' =dye + i), (64)
density matrix formulation. For example, for a two-state sys-

tem, the probability that a trajectory switches its decoherent” WNICh dw continues to denote the nonadiabatic coupling
state from staté to stateK' at timet is due to the diabatic—adiabatic transformation aiq(jﬂ is the

transverse componéfiof the coupling, which is usually ne-
p ,=ma>< _ 0 (59) glected(and is always neglected in the diabatic representa-
K=K PKK tion; however, it is reasonable to take account of it in deter-

The NDM method was shown to work well when tested Mining the direction of5). The vectordﬁt? is difficult to
against the SE method and several trajectory surface hoppirf@iculate, but is associated with all components of nuclear
method<! In the next section we discuss several shortcomMomentum and has a magnitd8ief O(1a,*), whereay is
ings of the NDM method and present the improved self-2 bohr. We therefore approximate
consistent decay of mixing algorithm.

pxkdt

di)=+ay Py, (65)

ILE. SCDM whereP,;, is a unitless unit vector in the direction &, .
o Substituting Eq(65) into Eq. (63) gives

Il.LE.1. Decoherent direction Cy = (1l Mao)(dkk,aOPLi), *Pyin), (66)

Thel unit ve(?toresK determine the dlrect|oq into which whered,, is the magnitude||dy,||) of de. and P(kcli()' is the
energy is deposited and out of which energy is taken as the A L
system decoheres. EquatitBb) is unsatisfactory because it component 0'.3"“’ n th? d|rect|or1 Oftl - . o
can couple the electronic energy to nuclear degrees of free- /€ aSSociate the first term in B@6) with the direction
dom arbitrarily far from the electronically nonadiabatic moi- dkk @nd the second term with the directié),. Thus we
ety (i.e., the “chromophorej, even when the nonadiabatic take
coupling is large. .

We note that Eq(51) may be used to write Eq54) as =S (67)

whereK is the decoherent state and

VD:I;K ve. (60 & (d) A 5 (d) A
Sk = (die 80Py Ak = PuinPuin) /| diier 80P A
where .
* PuinPuipll - (68)
b Pkk . .
VE:T_KKUKK+pEkUkk+(RepEk)UKk The sign in Eq(65) is arbitrary, and we choose it such that

the overlap ofdy,, andP;, is positive and the contributions
. D from the two terms in Eq(66) are additive.
+k§k (Repy) Ui (61) Furthermore, the sign af,, , although arbitrary, is fixed
) , by a particular choice of phase conventions|kyand|k’) at
and so the momentum change associated with the decohgfis neginning of the calculation, and then those phase con-

ence can be written a sum of terfes in Eq.(29)]. Each  \entions are used continuously throughout the calculation.

term describes the_ decoherence of a single dtate the When we use Eq(67) as the decoherent direction for
decoherent staté—i.e., coupling statek to the decoherent stat€, then, in regions
_ M\'/D where the surfac is strongly coupled to any other surface
PP=—> X S (62)  k, energy transfer due to decoherence takes place alang
S which may be justified by analogy with surface hopping,

where$, is the direction of the decoherence associated wittwhere it has been sho@h'>° that instantaneous surface

statek. This decomposition is essential for incorporating thetransitions due the strong nonadiabatic coupling between

correct mode dependence of the vibronic coupling in multi-StateskK and k involve energy adjustments alord, . In

state systems. In order to derive a physically motivated fornfegions away from the strong-coupling regidre., in re-

for &, we consider the physical origin of the state coupling.gions where alti, are very smajl all internal vibrations of

We will do this first for the adiabatic representation and therthe system contribute equally to decoherence.

for the diabatic representation. Both d,, andP,;, are within the nonrotational subspace,
a. Adiabatic representatioriThe nonadiabatic coupling and therefore momentum adjustments al§ngonserve total

drives electronic state changes in the adiabatic representati@fgular momentum, as discussed in Sec. 1B 1.

and is given by b. Diabatic representatiarSince the gradient is an anti-
(tot) Hermitian operator, Eq(2) shows thatd,,s= —d . With
Cuaer = (A p)Pyip- Ay (63 this in mind it is easy to see that E@7) reduces to

Downloaded 15 Mar 2004 to 160.94.96.169. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



5550 J. Chem. Phys., Vol. 120, No. 12, 22 March 2004 Zhu, Jasper, and Truhlar

+ (dlzaoP(l%)alzi PibPuin) ciated with electronic statésandk’ cause the element of the
5= ) = (69  reduced density matrix associated with the coherexjag,
|d1280P15'd12% PyinPuipl| to decay because of reduced overlap of the spatial compo-

in the two-state case, where the fitstlepends on whethég ~ nents and because of destructive interference of the phase
is 1 or 2, but cancels in Eq29), and the next twarare factors in Eq.(72). The equation shows that the time scale
determined by the convention after E§8). When there are associated with this phase interference % defined in Eq.
only two electronic stated;, provides a meaningful direc- (57). Except whenAU, is very small, this time scale is
tion for the decoherent force in an adiabatic representationnuch faster than the time scale for nuclear overlap decay,
as discussed above, and since there is only one pair of staté¥)d it is the fastest time scale in the system. A central as-
also in the diabatic representation. Based on these considegumption of the SCDM method is that this time scale pro-
ations, we generalize the above treatmenl @iabatic states Vvides a lower bound to the decay-of-mixing timg, . The
as follows. lower bound character of} could also be justified by the

In the rest of this section, l&tandk’ represent adiabatic time—energy uncertainty relation. In this context a first ap-
states anglandj’ represent diabatic states. The nonadiabatigroximation for the relaxation time is
coupling vectordy,: is the vector coupling between two
adiabatic statek andk’, each of which is, in | T =27 (R(1)), (73)

, , in general, some kk kk

linear combination of all of the diabatic stajeJhe diabatic  \here the factor of 2 accounts for the fact that a trajectory
potential energy matrixwhose elements arg;.) is anN  gshouid traverse a complete passage of a strong-coupling re-
XN symmetric matrix. F_or any pair of dia_batic states, Wegion with maximum coherenc&;*8and the decay-of-mixing
can construct the potential energy submatrix time must allow significant coherence over both the ap-

U. U., proach and recession from the point of maximum interaction,
Ulﬁjz): ( U-]-] U-“ ) (70)  hence the factor of 2.

e In Sec. Il A, we pointed out that, for smafl;,, a self-
which controls the direct coupling between these two statesonsistent treatment requires that the decoherence rate con-
An effective couplingd}f,) may be computed usin@}jz,) and stant T,Zkl, should tend to zero at least as fast Iaﬁo To
its gradient, eigenvectors, and eigenvalues according to thecorporate this requirement, we derive an alternative form

usual formula for a two-state systeftiTo obtainS;;, we use ~ Of the relaxation rate matrix. At any given geomeRy we
Eq. (68), replacing the adiabatic nonadiabatic couplifg: associate the self-consistent trajectory with two virtual tra-
with the effective Coup|ingjj(j2)_ jectories, one obtained by a virtual hop up to stdtend one
by a virtual hop down to stat& (the virtual hops being
defined in the usual sense of trajectory surface hopping
semiclassical methods, one assumes conservation of nuclear
The dependence of the relaxation times in &) on T, angular momentum during hops as well as along trajectories.
is unsatisfactory, and in the original paPewe identified the  Since the instantaneous rotational kinetic enéfgydepends
development of a more microscopically justified approxima-only on local geometrythrough the instantaneous moments
tion for 7, as a direction for further study. Although, as of inertia) and on angular momentum, it is conserved during
pointed out in the Introduction, the ultimate justification for hops. Therefore, the decomposition of the total energy of the
Ty Must be comparison of the results of the semiclassicalirtual trajectories into kinetic and potential energy compo-
calculations employing the new algorithm to accurate quannents may be written
tum dynamics, we believe that the argument given next pro-
vides a more self-consistent way to introduce the vibrational E=Tuibk+ Trort Uk (74)

kinetic energy. and the virtual vibrational kinetic energies may be used to

The time-dependent electronic wave function may begefine vibrational momenta after the virtual hop onto each
written as surface:

Il.LF.2. Decay-of-mixing time

_ — iU ROIA Pz-b’k
W=2 el dR(D)e , (7D) Tupk= k. 75

and the probability density is Since total energy is also conserved during a hop, one can
write

I\Iflzzg k()] di(R(1)|2

Evib
AU =[Tuipx— Tvibe | = o APyip kK’ » (76)
+2 2 (e Dk R(1)
K 12k where
X i (R(1))e™ AR KRONE, (72 Puio= (Puip  Puip )2 (77)
Therefore, in the reduced electronic density matrix, the
nuclear coordinates are integrated out and the differing
nuclear motions of the components of the wave packet asso- APy, k= |Pyib.k— Puib.k’ - (78
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To make this self-consistent with the SCDM trajectory, wehopping vector are canceled out in the final expression.
replace the unweighted average momentum in @) by Based on these considerations we Iab%j as the fastest
the current self-consistent field average, whictiPjg—i.e.,  self-consistent time scale in the system. Clearly, the deriva-
the instantaneous vibrational momentum along the currerion of Eq.(84) is not rigorous, and hence the adoption of the

SCDM trajectory. Thus we may use geometric dependence of, that is contained in equation is
Py a basic assumption of the method. The usefulness of this
AULK,=<7>|PWM— Puibk’|» (79 assumption will be tested by comparing the predictions of

the new theory with various scale factors to accurate

which, combined with Eq9(57) and (73, yields an alterna- quantum-mechanical dynamics calculations.
tive approximation At this point we recall a distinction emphasized in the
2% Introduction: namely, the difference between the physical
(80) time scale of decoherence and the algorithmic time over

7-I;k’:p_|p__|:>_ | . .. . .
vibl P vib— Fvib,K which decay of mixing should occur so that a semiclassical

A priori, any expression of the form ensemble of trajectories best simulates the evolution of a
s gapdn coherent wave packet. In deriving Ed8.3) and (84), we
Tk = (T ) (T (8D focused attention on the fastest time scale in the system,

is equally suitable, although it seems reasonable to limit conhich is the first term on the right side of E@S). We now
sideration to the smallest suitable valuendhat is consistent '€iterate an important lesson of the work of Parlant and

i 7 .48 .
with the decay of mixing formalism. To accomplish this we Gislaso” and Thachuket al:™ namely, that one obtains
note thatrﬁﬁf’ is independent oP;,, but Tl;k'NP\;l;L’ and More accurate results if one integrates the Ehrenfest equa-

therefore Eq(81) yields 7 ~ P . As explained above, the t'f:S fq{hth? etlectrotnm timplltﬁdesgl.e., IIeqGB) and f
decay of mixing formula requiree=2, and so we choose (14—without interruption through each complete passage o

n=2. This yields an alternative expression a strong interaction region. Including the decay of mixing
' terms interferes with this coherent completes passage, and

2 h AU therefore we recognize two competing factors affecting the
Tkk/_Tvib|Pvib,k_ Puib.kr| (82) optimal decoherence time for the SCDM algorithm. Use of
o i ) Eq. (84) gives the fastest possible self-consistent decoher-
This is not we_II defined when the V|rt.ual hop to the UPPETance so that energy transfer between electronic degrees of
surface is forbidden by the c.onserva"uon of energy or I"?ea\;reedom and nuclear degrees of freedom occurs in the region
momentum, and so we consider a third approximation givelys ir4ng coupling, which is physically reasonable. But use
by the limit of Eq. (82) when Py, > Pyip, . This yields of this fastest possible decoherence countervenes the need

3 N for coherent qomplete passage of a strong coupling region.
Tk = AN (83 We therefore introduce a coherency facththat makes the
system more coherent, and we set
Both TS() and T(ki) are well defined in all cases, but
neither of them alone satisfies all the physical constraints we
require forr,, . However, an arithmetic average does have Tkk,:cr‘;’kc, . (85)
the correct self-consistedSC) properties, and so we use
that, which yields
4 A The physical interpretation of the const&his that it repre-
—+ . (84) sents the factor by which first-order decay of mixing in the
AUke 4Tvio SCDM simulation is slower than the fastest self-consistent
This is a reasonable result. The first term in BBf) may be  time scale in the system.
considered as a lower limit for,,, in an uncertainty prin-
ciple sense, and it is reasonable that this provide a lower

bound for Eq.(84). Furthermore, at an intersection of the
potential energy surfaces, the decoherence time should Ber 3 peconerent-state switching probability
large so that the system traverses a single pass of a strong
interaction region coherently, and the first term of Eg¢) The NDM switching probability in Eq(59) is defined in
also enforces that. The second term has the effect that treich way that when the decoherent stat,ishe switching
decoherence term decreases to its lower limit whiep probability is also calculated from the decoheré@state
—o0, Which is reasonable since the nuclei traverse the nonaelectronic density. If the decoherent state continues ti,be
diabatic interaction region infinitely rapidly, while in the thennyg will approach unity and the densities in the other
other limit (T,;,—0), 7« becomes infinite because the electronic states will tend to zero. This favors the current
nuclear motionwhich is ultimately responsible for decoher- decoherent state because the contributionddrom deco-
ence is infinitesimal. Furthermore, E¢84) satisfies the re- herence is always positive. Therefore the NDM switching
quired limiting form of P\;bz for small P;,, and all refer-  probability is unsatisfactory. The simplest modification of the
ences to virtual hopévhich were used in the derivation, but NDM switching probability that remedies this problem is to
without requiring any details such as specification of thereplace Eq(59) by

__ sC_
Tkk! = Ty =
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mates obtained using the subset of three YRH cases were
similar to those obtained with the full set of 12 YRH cases

){ pﬁﬁdt O) for several previously published semiclassical reétitdile
=max — ,

(pkk— PRy )dt ) present study were selected such that trends in error esti-

PKHKr:ma{ -
PKK

(86)  maintaining some variety in the test set.

The MXH PEMs feature a narrowly avoided crossing
The generalization of Eq@86) to more than two states is and a localized region of strong coupling and may be con-
straightforward, and the resulting equations are analogous t§dered Landau—Zener—Teller systeti®’ The masses of
those obtained when generalizing B§9), as in Ref. 22.  the M, H, and X model atoms are 6.046 95, 1.007 83, and
When the switching probability is calculated from E§6) 2.01565 amu, respectively. The S&trong broayl SL
or from its multistate version, the method is called Se”‘(strong localizel] and WL (weak localizedl parametrizations

PKK

consistent decay of mixing. of the MXH system with thg1.10, 0, (1.10, 1, and(1.10,
2) initial conditions were included in the test set for a total of
Ill. TEST CASES nine MXH cases. Details of the MXH parametrizations and

We test the proposed semiclassical trajectory algorithm@'t""_‘llhcond't'ops are g|;]/en'|n|Re;. 2L bles for the YRH and
against accurate quantum-mechanical calculations using thl\ﬁXH € quantL_Jm:[_mec anlcz 0 girva esh_g_: N i tan
previously presenté&** MXH and YRH families of model parametrizations considered here exnibit an osciilatory

potential energy matrice®EMS. Both of these PEMs are SUTUCIUr€ as functions of scattering enetg§® We have pre-
defined in a diabati¢364° representation by their diagonal viously found that semiclassical results depend only slowly

2,434 i . -
potential energy surfaces and their diabatic coupling surfac@" e"?er%"- Itis the.refore deS|.rabIe o compare the semi
classical results obtained at a single-scattering energy to the

and describe electronically nonadiabatic atom—diatom colli- X X
sions of the form average quantum-mechanical value obtained over a range of

energies. Quantum-mechanical calculations were performed
A+BC(v",j"), at seven energies at and around the nominal scattering ener-

B+AC(v',j’), 87 gies for YRH(see the supporting information of Ref. 43 for
where (A,B,C)=(M,H.X) and (Y, R, H) for the MXH and detaily and 14 energies at and around the nominal scattering

YRH systems, respectively; the asterisk indicates eIectroni?necrjg3t/ f_?r MFE(H (seeltthe fstl;]pportmq{ mforma::on_oflRefl. 4|2
excitation, and the primes on the diatomic vibrationand or detaily. The results of the quantum-mechanical calcula-

rotationalj quantum numbers indicate that these quantitie lons were averaged to obtain _the quantum rgsults us.ed. here.
need not be conserved. Quantum-mechanical calculatio most cases, the values obtained by averaging are similar to

have been carried df#*3using these model systems for sev- ¢ values obtained at the nominal scattering energy.

eral different initial conditions and total energies, and we
consi(jer a subset of the cases here._ We will label t_hg.initiallv_ SEMICLASSICAL TRAJECTORY CALCULATIONS
conditions by the total energl given in eV and the initial
rotational statej of the diatomic molecule[i.e., by The coordinates and momenta of the nuclei and the elec-
(E/eV,j)]. For all of the cases considered here, the diatom igronic state populations were integrated using an adaptive
initially in its ground vibrational statéi.e., v=0), and the integration algorithm that was designed for use with semi-
total angular momentum of the system is zero. In total, weclassical trajectory calculatior. The algorithm uses a
will consider nine cases involving three surfaces of the MXHBulirsch—Stoer integrator with polynomial extrapolafior®
type and three cases involving two surfaces of the YRH typemodified such that the integrator is prohibited from stepping
The YRH PEMs feature weakly coupled, nearly parallelover local peaks and minima in the electronic probabilities.
potential energy surfaces in the entrance valles., as Y For the present calculations, the integration parantters
approaches RHand may be considered Rosen—Zener—were given the following values:egs=10 *%E, (1E,
Demkov system3?~>2The masses of the Y, R, and H atoms =27.211eV) and h,,=10 *au. (1a.u=2.4189
are 10, 6, and 1.007 83 amu, respectively. Three YRH cases 10 2 fs), which give converged results for the YRH and
are included in the test sétihere “case” is used to denote a MXH systems. The trajectories begin the simulation with the
specific member of the YRH or MXH family—i.e., a specific lone atom(Y in the case of YRH and M in the case of MXH
PEM parametrization—coupled with a specific set of initial separated from the center of mass of the diatom bay35
conditions: the YRHO0.1) parametrization with th€1.10, (1a,=0.52918 A) for the MXH cases and by &pfor the
0) initial conditions and the YRKD.2) parametrization with  YRH cases, and the simulation was ended when the product
the (1.02, Q and (1.10, 6 initial conditions. Details of the fragments were separated by at leasa3fdr both systems.
YRH parametrizations and initial conditions are given inWe have verified that the results of the semiclassical simula-
Ref. 43. This subset of three YRH cases was used in place d¢ions do not change when these distances are increased.
the previously publishéd set of 12 YRH cases because we The results are sometimes sensitive to the method used
showed for a subset of the methods tested that one dravis computePy_ x, in Egs.(59) and(86). One obtains better
reasonably similar conclusions from a subset, and so it is natonvergence with respect to decreastidf p,.(t)dt is re-
necessary to consider all 12 cases to test the methods, esgaced byp,(t) — pyi(t—dt).
cially considering the higher expendef studying weakly In addition to testing the new SCDM method, we will
coupled systems. The three YRH cases included in the@resent the results of semiclassical trajectory calculations

A* +BC(v,j)—
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TABLE I. Semiclassical trajectory methods tested in this paper.

Method Ref. Explanation

TFS— 22 The original version of Tully’s fewest switch@9
algorithm for trajectory surface hopping. The minus
denotes that the trajectory is reflected at frustrated hops.

FSTUVWV 60, 61 The fewest switches with time uncertainfFrSTU)
algorithm for trajectory surface hopping. THé&V suffix
denotes that frustrated hops are treated by the ¢fad

algorithm.

SE-H 15, 19, 62 Semiclassical Ehrenfest method with histogram analysis
for final states

SE-LSS 15, 19, 62 Semiclassical Ehrenfest method with linear smooth
sampling analysis for final states

NDM 21,23 Original natural decay of mixing method

NDM/SCDT Present NDM with self-consistedSC) direction (D) and time
(T)—i.e., Egs.(67) and(85) instead of Eqs(55) and (56),
respectively

NDM/SCS Present NDM with self-consistef8C) switching (S)—i.e., Eq.
(86) instead of Eq(59)

SCDM Present Self-consistent decay of mixing as presented in Sec. Il F of

the present paper

employing several other methdds®*'~2*°~%for compari- ity of a nonadiabatic event, which is the sumRy and Po;
son. In particular, the methods tested are listed and explaineml,, the reactive branching fraction, which is defined as
in Table I. Pr/Py; (»'), the mean value of’ in Eq. (87); (j'), the
Note that each method in Table | can be implemented immean value of " in Eq. (87); (v"y, the mean value of” in
the adiabatic representati¢e.g., FSTWV-A), the diabatic  Eq. (87); and(j"), the mean value of” in Eq. (87).
representatiorie.g., FSTWV-D), or the Calaveras County For the SE calculations, the final-state analysis is carried
representation(e.g., FSTWV-CC). The Calaveras County out using both the histograti) and linear smooth sampling
(CO) representatior involves choosing for each cagpo-  (LSS) methods(without taking account of whether states are
tential energy surfaces and couplings, masses, energy, initiglosed, as presented previousi{®? For all other calcula-
vibrational—rotational stajebetween the A or D representa- tions we employed only histogram analysis.
tion on the basis of which representation leads to the fewest
number of hop attempts per trajectdgn averaggin a TFS V. RESULTS
calculation. We previously presented argum&htthat this First, we gathered statistics to compare the time-
is the best representation for trajectory surface hopping, andveraged decoherence rates calculated by the original NDM
we also propose it as a reasonable way to choose a repres@pproximation with Eq(56) to those calculated with the new
tation in decay-of-mixing calculations. For the 12 cases conself-consistent expression, Eg5). The decoherence time is
sidered here, for 9 of thef8B, SL, and YRH the CC rep- not meaningful in the initial and final legs of the trajectories
resentation turns out to be the adiabatic one, and only for theasymptotic regionswhere the coupling is essentially zero.
three WL cases does it turn out to be the diabatic represerFhus we only averaged over portions of the trajectories
tation. where 0.0Zn,<0.98. To average the rates, we calculated
We note that the numerical method used for NDM andthe time average of {, for this portion of each trajectory
NDM/SCS (see Table | for method acronyinadiabatic cal- and then averaged these values over the ensemble of trajec-
culations is that presented in Ref. 23, whereas the formulgories. Then the result is reexpressed in time units by taking
tion used for the NDM/SCDT and SCDM adiabatic calcula-2 reciprocal:

tions is that presented in the present paper; however, the 1
results are independent of this methodological choice. The ?ET. (89
semiclassical Ehrenfest method yields the same results in the (Ur12)

diabatic representation or in the adiabatic representaion dfhe resulting values, called the time-averaged decoherence
Ref. 23. For a two-state case, results in the diabatic represetimes, are shown for three cases in Table II.
tation agree with those obtained using either adiabatic repre- Table Il shows that the original formulaised in NDM
sentation. So, for the two-state systems considered here mves time-averaged decoherence times of 2.5—-8 fs in the
representation needs to be specified. adiabatic representation and 2.9-10 fs in the diabatic repre-
The semiclassical trajectory calculations yield eightsentation. The self-consistent formula is less dependent on
guantities that will be compared to the accurate quantumrepresentation, and using=1, which corresponds to the
mechanical results summarized in Sec. Ill. In particular, weshortest self-consistent decoherence time, gives very fast de-
calculatePg, the probability of reaction, which is the lower cay of mixing, with'7=1.5-3.2fs. These values then in-
outcome in EQ.(87); Pq, the probability of quenching, crease roughly proportional t@, becoming 13-27 fs for
which is the top outcome in E@87); Py, the total probabil- C=9.
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TABLE Il. Average decoherence times(in fs). TABLE Ill. Mean unsigned relative error€b) in branching probabilities
and final-state moments.
MXH MXH YRH
SB WL 0.2 MXH YRH
Method C Rep. j=2 j=1 1.02 eV,j=0
Method C Rep. prob mom prob mom Average
NDM A 2.5 3.7 8.0
D 3.3 29 10 NDM/SCDT 1 A 63 19 63 26 43
NDM/SCDT 1 A 15 2.4 2.3 1 D 4 20 164 % 64
1 D 18 18 3.2 3 A 42 24 41 27 34
3 A 45 55 77 3 D 32 21 191 29 68
3 D 5.3 47 9.1 6 A 34 23 30 28 29
6 A 8.9 97 16 6 D 33 21 178 31 66
6 D 10. 9.0 18 9 A 39 22 22 29 28
9 A 13 14 27 9 D 39 19 154 34 61
9 D 15 13 27 SCDM 1 A 51 27 29 25 33
NDM/SCS e A 25 3.7 7.6 1D 4 19 249 29 85
D 3.4 29 1 3 A 32 25 34 25 29
SCDM 1 A 15 27 23 3 D 31 21 135 31 54
1 D 1.9 1.8 392 6 A 28 24 29 27 27
3 A 45 5.7 73 6 D 33 21 90 33 44
3 D 5.4 4.7 9.2 9 A 34 22 24 28 27
6 A 8.9 9.7 16 9 D 37 19 66 37 40
6 D 10. 8.9 18
9 A 13 14 27
9 D 15 13 27
100 & _
PE(X; YRH)= —- > E.(X), (93)
a=10

Limiting the averages to only quenching trajectories OfwhereX=1="prob” and X=2="“mom.” Finally, we aver-

only the subset of reactive trajectories or the subset ofged the two types of errors and two types of systems to
quenching trajectories did not produce any systematic differyptain “average” mean unsigned errors
ences for MXH with time-averaged decoherence times for
each of the subsets sometimes being withit0% of those PEX,MXH)+PEX,YRH)

: , : PEaverage= - >, .
for the full set and being sometimes smaller and sometimes 2& 2
larger than for the full set. For YRH, though,for reactive (94)
trajectories is as much as 48% less than the time average

over all trajectories and for quenching trajectories is up to

2

We can also average in the other order, obtaining

36% less than the time average over all trajectories. 2 —pfia

In order to test the accuracy of the methods we com- (&)= m (95
puted the unsigned relative error in each of the eight quanti- _
ties specified in Sec. IV: For a complete set of results, includiff“*"®and Q" for

all of the semiclassical methods and test cases considered in
this paper, as well a&;) for MXH (B8=1, y=9) and YRH
(B=10,y=12) and various other averages of these quanti-
. o ' ties, see the supporting informati6hHere we focus on the
v_vhereQia IS quantityl fqr test casax. _The first four quan- more highly averaged percentage errors of H§2)—(94)
tlfues are call_ed bran(_:hmg probabilities, and the mean UNbecause these are sufficient to test the performances of the
signed error in these is methods. These percentage errors are given in Tables Il
12 and IV.
ea(prob) = ZE > Eias (90 Table Il is a test of how the accuracy dependsibiWe
=1 see that the average percentage errors decrease considerably

whereas the next four quantities are called final-state mowhenC is increased from 1 to 3, and they further decrease as

Q- g
Eia=  ~quan@l (89

ia

ments and the mean unsigned error in these is C is increased to 6, but the results 16r=6 andC=9 are
8 similar. For YRH, the error in the moments increases with
T, (mom)= Cig- (91) increasingC, but the opposite trend is found for MXH. For

4i=5 YRH the errors in the probabilities decrease systematically
%SC is increased from 1 to 9, whereas for MXH they show a
nd. = . .

minimum atC=6. If one were to continue to increageto

o, the probabilities should tend to the EH-LSS values, and

These were then averaged over the nine MXH cases a
converted to percentage errors

0l the moments should become inaccurgiaece energy would
PEX;MXH)=—5- 2 Ea(X) (92 pe transferred into or out of electronic degrees of freedom
«t only very slowly in the distant post-collision asymptotic re-
and similarly for the three YRH cases gion where the coupling is essentially zero
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TABLE IV. Mean unsigned relative error®b) in branching probabilities The trajectories of the SE method, unlike those of the
and final-state moments. surface hopping and decay-of-mixing methods, do not end in
MXH YRH a pure electronic state. This causes thg amount of energy
available for translation, rotation, and vibration to be un-
Method C Rep. prob mom prob mom Average  nhysical and this is reflected in the large errors in the rota-
TFS- A 56 17 40 46 40 tional and vibrational moments. One can somewhat amelio-
- D 46 18 458 55 144 rate these errors by histogramming, but this can significantly
FSTUTY CAC ;5’33 1188 ;? jg 333 raise the errors in the probabilities.
D 13 18 202 62 81 _ The next method in the table is NDM. On average NDM
cCc 48 17 27 46 35 is already better than TFS—, FSYV, and SE. Not only are
SE-H e all 50 34 98 47 72 the results better than all three of these previous methods, but
SE-LSS el 51 30 68 83 75 the accuracy is also less dependent on representation. This
NDM A 53 27 36 23 35 ; ;
good performance is one reason why we decided to further
D 36 24 211 23 73 .
cc 48 27 36 23 33 explore the DM approach, leading to the present paper.
NDM/SCDT 9 A 39 22 22 29 28 Moving from NDM to NDM/SCDT or NDM/SCS cor-
9 D 39 19 154 34 61 responds to adding the first two or the third of the three
9 Ccc 41 20 22 29 28 improvements of the present paper. It is very encouraging
NDm/SCs - A48 260 28 21 31 that when either subset of these improvements—namely, the
- D 36 22 117 24 50 S
... cc a5 26 28 21 30 direction of energy release and the geometry dependence of
SCDM 9 A 34 22 24 28 27 the decoherence tim@n NDM/SCDT) and making the
9 D 37 19 66 37 40 switching algorithm consistent with time-dependent Hartree
9 CC 38 21 24 28 28 theory (in NDM/SCS—is introduced individually, the accu-

racy improves very significantly.

Finally, Table IV shows even more improvement when
all three self-consistent improvements are introduced in the
full SCDM method. In fact, looking back at Table Il for a
moment, even the less optimum value® 6 provides bet-
ter accuracy than NDM/SCS or NDM/SCLOWwith any value
c& C), and even the far-from-optimum value G&=3 is bet-

dependence on choice of representation gets smaller as - : .
increases. This is reasonable since in the Ehrenfest I@nit, ter than the original NDM, which was our best method prior
to the present paper.

= and the results are fully independent of representation. . .
Table IV compares the performance of the SCDM results We do not have a good theoretical reason for choosmg a
with C=9 to previously available methods and to two meth_partlcular value ofC. The results presented here, along with

ods intermediate between NDM and SCDM. We will next extensive(unpublishedl tests on one-dimensional model sys-

consider these result in the order that they appear in the tablf.ms' show that the results usually improveCas increased

The TFS— method defines a useful base line for testin £°6m ; to 6, butt SSOW I|tttleb|chang(_a from 3 to 9. Thas d
the accuracy of proposed improved methods. TFS— show§h - see_mtsh. 0 be a 'Sl'r? t('a regmn,ﬁatn bW(tah recomI:“nen
reasonable accuracy in both representations for MXH, pughoosingC in 'S region. That Is we wart. to be Ihe small-
very poor accuracy in the diabatic representation for YRH.eSt value that gives acc_urate state populatl_ons SO .that energy
This is probably a good place to explain why representatioﬁelekasce tOCClIJrS matlr?ly in the tstron?—coupllnt? rsg;on. dlftwe
independence is important. First, “for general multidimen- M2 et ool arge,l de energy L"?mhs er mar)]/ € Ie'l?ﬁ/'e foa
sional problems, the evaluation of the optimal representc’:ltioh':‘S_S strongly coupied region, Which 1s unphysical. This gives
poses serious numerical problem&"Second, even if one insight into a limitation of the semiclassical Ehrenfest

restricts oneself to choosing between the adiabatic and diabg]e:(h(?j[Wh'Ch 'ﬁ ?Qaloﬁo?s @_’:m' Ifl,_tog the contra_lry,”we i
tic representations, it is not always possible to pregidgten ~ MaKkeC too small, the electronic amplitudes are typically no

the accurate quantal results are unavailaisleich represen- treated as coherent over even a single transversal of a strong-

tation is preferred. Third, and even more important, is thaFOUp_Iing region, and the state probabiliies evolve less .self-
for complex systems there could be regions of configuratioﬁpns'Stently andaccording to our testdess accurately. This

space in which the adiabatic representation is preferred, bVes insight into a limitation of t.h € fewest—switches trajec-
dory surface hopping method, which is analogou€te0 at

could be other regions of configuration space where the dit-he places here hops occur. The surface hopping method of

abatic representation is more natural. The results for gener Iarlant and G'SIaSGﬁA?_ g\ttempts to remove th|§ I'm'te.‘t'on’
complex systems should be much more reliable if one has ut at _the cost of requiring one to rerun certain portions of
method that yields accurate results in both representations.t e trajectory.

The next method in Table IV, FSTWV, is, as
expectef’®* more accurate than TFS—. Encouragingly, its V- CONCLUDING REMARKS
accuracy is also less dependent on representation, but the In this article, we modified the natural decay of mixing
YRH probabilities still have large errors when this system isalgorithm in three ways to make the method more consistent
treated diabatically. with the time-dependent Hartree method. At the same time

All things considered, the optimum value Gfis prob-
ably in the range 6-9. We will us€=9 since Table Il
shows this is slightly better tha=6 on average.

An interesting aspect of the results in Table Ill is that the
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we retained the key concept of first-order decay of mixing, : ..

which is required to obtain physical final states. The resuling H>™=R:| P+ EK Nk VeV

new method, called self-consistent decay of miXi8¢DM),

may be regarded from two different points of view. On the

one hand, it corresponds to including decay of mixing in the —; > (XX + PP ) Vi | - (A4)
time-dependent Hartree method so that each trajectory has a K

physical final electronic state and corresponds to a reasorsince energy must be conserved, this must equal zero. Since
ably unmixed state at the start of each traversal of successig js not zero, in general,

transversals of the strong-coupling regions in a single trajec-

tory. On the other hand, the algorithm corresponds to _ _

smearing-out a trajectory surface hop so that it occurs no P ; nkVRVk+2k kz (XX + PP ) Vi -
faster than the fastest self-consistent time scale in the system, (A5)

rather than treating it as instantaneous. This SCDM methogsing Eq.(7) and the skew symmetric characterdyf, , one
is tested against accurate quantal dynamics for 12 cases on.3,, show that EqUA5) agrees with Eq(46).

different sets of poteqtial energy surfaces. It is Very encour- A key element in the derivation presented here and in
aging that the theoretical improvements, whether introducegef 1 is the use of the semiclassical approximation(&8).

separately or together, result in improved agreement, on a\Reference 15 does not involve this semiclassical approxima-
erage, with the accurate quantum-mechanical ress#s the  (ion and hence the adiabatic formulation of Ref. 23, because
last column of the last three rows of Table)IVh the process i is pased on Ref. 15. does not require it either.
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